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Abstract 

Permutation group-theoretical methods are used to study the chiralization of  
achiral polyhedral skeletons with o vertices by successive hgand replacement. Start- 
ing from the fully symmetrical ligand partition (v), such chiralization processes may 
be characterized either by the minimum number of ligand replacement steps m, or 
the minimum number of different kinds of ligands i, required to destroy all 
improper rotations. These parameters are trivially related to the lowest degree 
chiral ligand partition(s) as determined by the subduction of the skeleton point 
group G into the corresponding symmetric group S o by the procedure of Ruch and 
Sch6nhofer. Two different chiralization pathways with different values of m and i 
are found for the octahedron, cube, hexagonal bipyramid, and icosahedron. Many 
less symmetrical chemically significant polyhedra have the degree 2 ligand partition 
(v - 2, 2) as the lowest degree chiral ligand partition and thus have only one chiraliza- 
tion pathway. Such polyhedra include the bicapped tetrahedron, trigonal prism, 
capped octahedron, bisdisphenoid, square antiprism, 4, 4,4-tr icapped trigonal prism, 
4-capped square antiprism, 4,4-bicapped square antiprism, and the cuboctahedron. 

1. Introduction 

Consider an achiral polyhedral skeleton having identical achiral ligands at each 
of  its v vertices. The successive replacement of these ligands L 1 by other achiral ligands 
L2 . . . . .  Lo-1 different from L 1 will at some point destroy all improper rotation 
symmetry elements (including reflection planes and the inversion center, if present), 
leading to a chiral system. Such a process can be called the chiralization of the achiral 
polyhedral skeleton. Sokolov [2] has shown that the chiralization of polyhedra can 
be defined in two different ways, namely by the minimum number  of ligand replace- 
ment  steps m, or the minimum number of different kinds of  ligands i, required to 
destroy all improper rotations. The values of m and i as well as v are definite character- 
istics of  the polyhedron in question although, as noted below, some polyhedra may 
have more than one chiralization pathway. 
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This paper develops these ideas of Sokolov in terms of the chirality algebra 
pioneered by Ruch and Sch6nhofer [ 3 - 5 ] ,  reviewed by Mead [6], and discussed in 
three previous papers of this series [ 7 - 9 ] .  The chiralization parameters m and i are 
simply related to the Young diagrams corresponding to the most symmetrical chiral 
ligand partitions by the Ruch-Sch6nhofer partial ordering [4,6]. In addition, this 
paper develops the concept of multiple chiralization pathways and extends the concept 
of chiralization to a wider range of chemically significant polyhedra than those treated 
by Sokolov [2]. 

2. Background  

Consider the full symmetric group Pn containing n! elements. This group 
contains exactly one conjugacy class and hence one irreducible representation [10] 

• , ~ ,  i = k  for each possible set of positive integers m 1, m 2 ,  . . m k whose sum i= 1 m i  = n.  
Such a set of positive integers is called a partition of n. A given partition of n can be 
depicted by n boxes arranged so that the successive rows contain m 1, m 2 . . . . .  m k 
boxes, where m i >/ mi+ 1 . Such an arrangement of boxes is called a Young diagram 
[10]. A Young diagram is drawn so that the top row is the longest row and the left 
column is the longest column. 

Chirality algebra uses Young diagrams to represent ligand partitions where 
the rows correspond to identical ligands. Ligand partitions can also be represented 
by symbols of the type (abl I a~ 2 . . . abpp), where a i and b i a r e  small integers and 
am > am + 1 (1 ~< m ~< p) [7]. In this symbol for a ligand partition there are b i sets 
of a i identical ligands. In the description of ligand partitions by Young diagrams, the 
following three parameters can be used to classify the Young diagrams. 

(1) Order (o): This represents the maximum number of identical ligands in 
the ligand partition and is simply the length of the top row. 

(2) Index (i): This represents the number of different ligands in the ligand 
partition and is simply the length of the left column. 

(3) Degree (g): This provides a basis for ordering Young diagrams (the Ruch-  
Sch6nhofer partial ordering) and represents the minimum degree of the 
corresponding ligand-specific chArality polynomial [4,6,7]. The degree of 
a Young diagram can be calculated by the following equation: 

k = order 

= x -1) .  (1) g Z 
k = l  

In eq. (1), c k represents the length of column k. 

The Ruch-Sch6nhofer partial ordering of Young diagrams can also be described 
in terms of the so-called transfer  cond i t ion  [6]. In such terms, a Young diagram Y(P) 
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Fig. 1. Lattice of Young diagrams and 
ligand partitions for six ligand sites. 

smaller than a given Young diagram y(r) O.e. of lower symmetry by the Ruch-  
Sch6nhofer partial ordering) can always be obtained from y(r) by moving boxes 
downward without at any time producing an array of boxes which violates the require- 
ment of a Young diagram that the lengths of the rows and columns decrease mono- 
tonically from the top row and the left column, respectively. This process can continue 
until the fully asymmetric Young diagram representing the ligand partition (1 n) is 
reached. The partial ordering of the Young diagrams can then be depicted by a lattice 
representing allowed movements of boxes from a given Young diagram to give higher 
degree Young diagrams representing less symmetrical ligand partitions. Thus, the 
lattice in fig. 1 depicts the Ruch-Sch6nhofer partial ordering for all of the Young 
diagrams having six boxes, corresponding to all possible partitions of six ligands. Note 
the bifurcations in this lattice moving towards maximum degree (i.e. maximum asym- 
metry and downwards in fig. 1) at the Young diagrams corresponding to the degree 
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2 (42) and degree 4 (321) ligand partitions to give the degree 3 (32) and (41 a) and 
degree 6 (23 ) and (313 ) ligand partitions, respectively. 

In the study of chirality, the minimum degree (maximum symmetry) ligand 
partitions leading to chiral systems based on an achiral polyhedral skeleton are particu- 
larly significant. For this purpose, the chiral ligand partitions can be found by the 
following group-theoretical procedure [4,6,7]. 

(1) The characters for the skeletal point group G subduced [4,6,7,11] by 
each irreducible representation F r of the symmetric group Pn are determined from the 
character tables of Pn (refs. [12--14]) by copying down the characters of each 
irreducible representation Pr for the operations of Pn which are also in G. In order to 
recognize which operation in Pn corresponds to a given operation in G, the cycle 
partition of the operation in G is determined, and the characters of the unique opera- 
tion in Pn with that cycle partition are used. 

(2) The characters of the chiral representation P,  of G are determined simply 
by using +1 for the proper rotations (E, Cn) and -1 for the improper rotations 
O, i, s . ) .  

(3) Standard group-theoretical methods [11,15,16] are used to determine 
which representations F r of Pn, when restricted only to operations in G, contain the 
chiral representation F,  of G. Note that representations which are irreducible in 
systems with full Pn symmetry are no longer necessarily irreducible when the sym- 
metry is reduced to G. 

(4) The Young diagrams corresponding to these irreducible representations 
of the symmetric group Pn correspond to chiral ligand partitions for a skeleton with 
point group G. 

Among the chiral ligand partitions found in this manner, those of lowest 
degree are particularly significant since they correspond to the maximum symmetry 
ligand partition leading to a chiral system from an achiral skeleton. The other chiral 
ligand partitions found in this manner have a more profound permutation group- 
theoretical significance [8] relating to qualitative completeness [4,6] ; they will not 
be discussed further in this paper. 

The two parameters in the Sokolov paper [2] can readily be related to proper- 
ties of the Young diagrams of the lowest degree chiral ligand partition determined, 
as outlined above. Thus, the minimum number of chiralization steps m (~ in Sokolov's 
paper) is simply the difference between the number of vertices and the order (o) of 
the lowest degree chiral ligand partition. Similarly, the minimum number of different 
ligands i required for chiralization (~" in Sokolov's paper) is simply the index of the 
lowest degree chiral ligand partition, and therefore is given the same symbol for 
clarity. These relationships allow the group-theoretical algorithm outlined above 
(rather than trial and error) to be used to determine the Sokolov chiralization para- 
meters, thereby making feasible the determination of these parameters for a wider 
range of chemically significant polyhedra. Of particular interest is the discovery of 
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several polyhedra having multiple chiralization pathways, arising from bifurcations 
in the corresponding Young diagram lattice. 

3. Results 

Table 1 summarizes the chiralization parameters for the most chemically 
significant polyhedra having from four to twelve vertices. The information presented 
in this table includes the lowest degree chiral ligand partitions and the corresponding 
degeneracies, degrees g, order o, indices i, and chiralization steps m. In addition, the 
number of nonidentical vertices N and the number of different binary ratios BR are 
presented for comparison with those parameters of Sokolov [2]. 

Of particular interest is the discovery of four polyhedra, namely the octa- 
hedron, cube, hexagonal bipyramid, and icosahedron, which have two different 
chiralization pathways leading to two different lowest degree chiral ligand partitions 
having the same degrees. Such polyhedra may be called bifurcately chiralizable. This 
possibility was not explicitly recognized in the 1976 paper by Sokolov [2]. 

The origin of bifurcately chiralizable polyhedra can best be illustrated by the 
simplest such polyhedron, namely the regular octahedron, using the six-box Young 
diagram lattice depicted in fig. 1. The bifurcation at the ligand partition (42) in this 
lattice is responsible for the bifurcate chiralizability of the octahedron. Thus, the 
three-step (m = 3) chiralization of the octahedron to the (31 a) chiral ligand partition 
proceeds along the sequence (6) ~ (51) ~ (412) ~ (313) in fig. 1, noting that direct 
routes from the (51) to the (412) and from the (412) t ° the (313) ligand partitions 
can be taken avoiding the (42) and (321) ligand partition intermediates. Similarly, 
the four-step (m = 4) chiralization of the octahedron to the (23) chiral ligand parti- 
tion proceeds along the sequence (6) ~ (51) ~ (42) ~ (321) ~ (2 a) in fig. 1, noting 
that a direct route from the (42) to the (321) ligand partition can be taken avoiding 
the (32) or (412) ligand partition intermediate. Similar alternative chiralization path- 
ways can be found for the cube, hexagonal bipyramid, and icosahedron using the 
more complicated Young diagram lattices for 8, 8 and 12 boxes, respectively. 

Most chemically significant polyhedra having v vertices, where v 1> 6, which 
have only one chiralization pathway (i.e. are not bifurcately chiralizable) have 
sufficiently low symmetries that the degree 2 ligand partition ( o -  2, 2) with 
i = m = 2 is already chiral. This corresponds to a two-step chiralization process 
(o) ~ (o - 1, 1) -+ (o - 2, 2) which stops before reaching any biftlrcations in the 
Young diagram lattice. Examples of such polyhedra (table 1) include the bicapped 
tetrahedron, trigonal prism, capped octahedron, bisdisphenoid, square antiprism, 
4, 4, 4-tricapped trigonal prism, 4-capped square antiprism, 4, 4-bicapped square 
antiprism, and the cuboctahedron. 
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Table 1 

Some polyhedra and their chiralization a 

Chiral 
Point ligand Chiralization c 

Polyhedron o e f group partitions b g o i m N BR 

Tetrahedron 4 6 4 T d (14 ) 6 1 4 3 1 1 
Trigonal bipyramid 5 9 6 D3h (221) 4 2 3 3 2 3 
Square pyramid 5 8 5 C4o (312) 3 3 3 2 2 3 
Octahedron 6 12 8 O h (23 ) 6 2 3 4 1 2 
Octahedron 6 12 8 O h (313) 6 3 4 3 1 2 
Bicapped tetrahedron 6 12 8 C2u 2(42) 2 4 2 2 3 7 
Trigonal prism 6 9 5 D3h (42) 2 4 2 2 1 3 
Pentagonal bipyramid 7 15 10 Dsh 2(421) 4 4 3 3 2 4 
Capped octahedron 7 15 10 C3o (52) 2 5 2 2 3 6 
Bisdisphenoid d 8 18 12 D2d 3(62) 2 6 2 2 2 7 
Hexagonal bypyramid 8 18 12 D6h (42) 4 4 2 4 2 5 
Hexagonal bipyramid 8 18 12 D6h 2(521) 4 5 3 3 2 5 
Square antiprism 8 16 10 D4d 2(62) 2 6 2 2 1 4 
Cube 8 12 6 O h (42) 4 4 2 4 1 3 
Cube 8 12 6 O h (521) 4 5 3 3 1 3 
4, 4, 4-tricapped trigonal prism 9 21 14 D3h 2(72) 2 7 2 2 2 6 
4-capped square antiprism 9 20 13 C4v 2(72) 2 7 2 2 3 7 
4 ,4-bicapped square antiprism 10 24 16 D4d 2(82) 2 8 2 2 2 7 
. B l l H l l 2 - p o l y h e d r o n  e 11 27 18 C2u (10,1)  1 10 2 1 5 20 
Icosahedron 12 30 20 1 h 2(84) 4 8 2 4 1 3 
Icosahedron 12 30 20 I h 2(921) 4 9 3 3 1 3 
Cuboctahedron 12 24 14 O h (10, 2) 2 10 2 2 1 4 

av = number of vertices; e = number of edges; f = number of faces. 
bOnly the lowest degree chiral ligand partition is listed. The octahedron, hexagonal bipyramid, 

cube, and icosahedron are listed twice since there are two different lowest degree chiral ligand 
partitions for these polyhedra. The numbers in front of the parentheses indicate the degeneracies. 

Cg = degree of the lowest degree chirality polynomial; o = order of the corresponding Young 
diagram (length of the longest row); i = index of the corresponding Young diagram (length of 
the longest column); m = number of ligand substitution steps from the ligand partition (o) in 
which identical ligands are present at all vertices; N = number of non-equivalent vertices; BR 
= number of non-equivalent binary relations. See Sokolov, Russ. J. Struct. Chem. 17(1976)642 
for a more detailed discussion of the last two parameters. 

dThe bisdisphenoid is most frequently called the (D2d) dodecahedron in chemical contexts, 
although this latter term invites confusion with the (regular, lh) pentagonal dodecahedron. 

eFor  a more detailed description of this l l -ve r t ex  C2u polyhedron, see fig. 5 of Klanberg and 
Muetterties, Inorg. Chem. 5(1966)1855. 
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